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Experiments in nearly homogenous turbulent shear flow 
with a uniform mean temperature gradient. Part 1 
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A reasonably uniform mean temperature gradient has been superimposed upon a 
nearly homogeneous turbulent shear flow in a wind tunnel. The overheat is small 
enough to have negligible effect on the turbulence. Away from the wind-tunnel 
entrance, the transverse statistical homogeneity is good and the temperature fluc- 
tuations and their integral scales grow monotonically like the corresponding velocity 
fluctuations (Harris, Graham & Corrsin 1977) .  Measurements of several moments, 
one- and two-point correlation functions, spectra, integral scales, microscales, prob- 
ability densities, and joint probability densities of the turbulent velocities, temperature 
fluctuations, and temperature-velocity products are reported. The heat-transport 
characteristics are much like those of momentum transport, with the turbulent 
Prandtl number nearly 1. The temperature fluctuation is better correlated with the 
streamwise than the transverse velocity component, and the cross-component D,, of 
the turbulent diffusivity tensor has sign opposite to and about twice the magnitude 
of the diagonal component Some resemblance of directional properties (relative 
magnitudes of correlation functions, integral scales, microscales) of the temperature 
with those of the streamwise velocity is also observed. Comparisons of the present data 
with measurements in the inner part of a heated boundary layer and a fully turbulent 
pipe flow (x,/d = 0.25) show comparable magnitudes of temperature-velocity corre- 
lation coefficients, turbulent Prandtl numbers and ratios of turbulent diffusivities, 
and show similar shapes of two-point correlation functions. 

1. Introduction 
The concept of homogeneous turbulence sheared by a uniform mean velocity 

gradient was introduced by von K&rm&n (1937)  as a problem of complexity inter- 
mediate between unsheared homogeneous turbulence and rectilinear non-homogeneous 
shear flows. Indeed, in the absence of the complicating effects of rigid boundaries, 
turbulent/non-turbulent interfaces, and various types of inhomogeneities, this flow 
allows relatively simple analytical representation, although it is more difficult to  
realize experimentally than are the traditional shear flows such as channel and jet. 
It retains many of the crucial features of the more general sheared turbulent flows, 
so it can give physical insight into a variety of processes and can be useful in tests of 
some theories. 

t Present address : Department of Mechanical Englneering, University of Ottawa, Ottawa, 
Canada K1N 6N5. 
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Some mathematical aspects of an exactly homogeneous turbulent shear Aow were 
studied first by Reis (1952)) Burgers & Mitchner (1953), and Craya (1958)) all of whom 
derived equations for the two-point velocity correlations and the energy spectra. 
The idea remained an abstraction, however, because the most obvious method of 
trying to generate it, a ‘turbulent rectilinear Couette flow’, will not work; the integral 
scale of such a flow driven by a moving wall could not be much smaller than the gap 
between the walls, so no good approximation to homogeneity would result (Robertson 
1959; Robertson & Johnson 1970). 

The idea that a nearly homogeneous turbulent shear flow could actually be generated 
in the laboratory, and suggestions for its generation, were offered by Corrsin (1963). 
The first moderately successful experimental realization of such flows was achieved by 
Rose (1966) with the use of a plane grid with parallel rods of uniform diameter but 
non-uniform spacing. The resulting flow had reasonably uniform mean strain rate 
(about 13.7 s-1) as well as nearly homogeneous transverse distributions of turbulent 
intensities and shear stress, but quite non-uniform transverse profiles of the integral 
length scales and Taylor microscales, because of the non-uniform rod spacing. 

Other techniques used to produce nearly uniform mean shear and improved trans- 
verse homogeneity included a set of equal-width parallel channels with variable 
internal resistances (throttles) (Champagne, Harris & Corrsin 1970)) combinations of 
uniform grids and a honeycomb of variable cross-section (Rose 1970; Hwang 1971) 
and a combination of non-uniform grid and a uniform honeycomb (Mulhearn & 
Luxton 1970, 1975). A number of conclusions were reached by these investigators: 
the turbulent shear-stress correlation coefficient approached an asymptotic value 
roughly equal to 0.45; the integral length scales and Taylor microscales increased 
indefinitely; the velocity correlation function and spectra reached approximately self- 
preserving forms; paradoxically (with the exception of the far-downstream region in 
the experiment of Mulhearn & Luxton 1970), the kinetic energy decreased from its 
initially imposed level to a seemingly asymptotic constant value, despite the expected 
positive net energy production associated with growing integral scales. Champagne 
et al. (1970) attributed this paradoxical result to the insufficiently long development 
time of the above flows, which can also be interpreted as a too small value of the total 
strain. Indeed, in the subsequent experiments of Harris et al. (1977)) where the mean 
strain rate was roughly four times that of the previous experiments, with corres- 
pondingly larger mean strain, the turbulent kinetic energy passed through a minimum 
and then increased monotonically. They confirmed the continuous increase of the 
integral length scales, but found that the Taylor microscale increased more slowly 
than the integral scale, if a t  all. 

In  the earlier experiments, measurements have been made of the downstream 
development of the turbulent velocity components, as well as of some terms in the 
turbulent energy balance equation. Other measurements included velocity spectra, 
Eulerian integral length scales, Taylor microscales, and two-point space and space- 
time correlations, and iso-correlation contours of the velocity components and the 
shear stress in a fixed frame as well as in a frame following the mean motion. 

The present report is centred about the study of the transport of heat as a passive 
scalar in a wind-tunnel turbulent flow with uniform mean velocity gradient, uniform 
mean temperature gradient, and transversely nearly homogeneous velocity and 
temperature fluctuation fields. NO previous experiments in such a flow have ever been 
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reported; however, heat has often been used as a scalar contaminant in the study of 
turbulent transport and mixing in other ‘simple’ turbulent flows. The present study 
is a direct generalization of Wiskind’s ( 1962) heat-transfer experiments in grid- 
generated isotropic turbulence with a uniform mean temperature gradient. He found 
that, consistent with the theoretical predictions of Corrsin (1952)) the temperature 
fluctuation level far downstream of the grid appeared to reach a constant asymptotic 
value. Measurements in similar flows have also been reported by Alexopoulos & Keffer 
(1971) (their main objective was, however, the study of the interaction of this flow 
with a turbulent wake), and by Venkataramani & Chevray (1978)) who conducted 
extensive measurements of probability and joint probability densities of velocity and 
temperature. 

This report presents measurements of the general development of the velocity and 
temperature fluctuation fields and their characteristic scales, correlation functions, 
energy spectra, and probability densities of the two fields. Balances of the turbulent 
energy and the mean-square thermal fluctuations are attempted, and a number of 
dimensionless parameters characterizing momentum and heat transfer are evaluated 
from the data. A second report will focus on the fine structure of the two fields. 

2. Analytical considerations 
2.1. The velocityjield 

The instantaneous local velocity in a viscous, incompressible flow field in the 
absence of body forces is customarily described by the Navier-Stokes equations. 
Decomposing the instantaneous values into temporal, spatial or ensemble averages 
(here denoted by overbars) and mean-free fluctuations (here denoted as lower-case 
letters), and following Reynolds’ (1894) procedure, it is possible to derive balance 
equations for various moments of velocity, vorticity, etc. The simplified form of such 
equations in the case of homogeneous turbulent shear flow was given by Reis (1952)) 
Burgers & Mitchner (1953) and Craya (1958). Extensive discussion, taking into con- 
sideration the experimental evidence, can be found in the papers by Champagne et al. 
(1970) and Harris et al. (1977). 

The assumption employed in the latter two studies was that there exists a flow 
region with (u) two-dimensional, steady, rectilinear mean velocity ol with a uniform 
mean gradient aU1/8xz; ( b )  velocity and pressure fluctuations statistically homo- 
geneous in any ( x 2 , x g )  plane; and (c) all mean values stationary with respect to a 
‘laboratory’ inertial frame. 

As a direct consequence of the above assumptions, the mean continuity equation 
reduces to 

a U 1 p x ,  = 0; (1) 

therefore GI is a function of x2 only. On the other hand, the equation for the mean 
turbulent kinetic energy 2 = becomes (after the omission of higher-order terms) 

where 

- d(17 29 ) ---dUl ul- N -u u --€, 
dxl ‘dx, 
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is the mean turbulent energy dissipation rate. Equation ( 2 )  is inconsistent with the 
hopes for formal transverse homogeneity, since its left side is a function of x2 while 
its right side is not. Thus, transverse homogeneity is theoretically impossible. I n  the 
present experiment, fortunately, all three assumptions are approximately satisfied 
(see Harris et ul. 1977). 

2.2. T h e  temperature f ield 

The temperature T a t  a point in a fluid with constant molecular diffusivity y obeys 
the equation 

aT aT a2T -+ui- = y- 
at ax, axiaxi* (3) 

Decomposing T into mean T and fluctuation 8, it is possible to  derive balance 
equations for the various temperature moments and, in combination with the Navier- 
Stokes equations, for the temperature-velocity covariances. 

Assume a velocity field approximately satisfying assumptions (a) ,  ( b ) ,  and ( c )  above. 
I n  addition, assume a superimposed passive temperature field with the following 
properties: ( d )  two-dimensional, linear mean temperature profile, 

- 0; 
aT aT 
- = const., independent of x2, x3, - - 
3x2 ax3 

( e )  fluctuations statistically homogeneous on any (x,, x3) plane; and ( f )  stationary. 
I n  the absence of an equation analogous to (1) there is no a priori restriction that 

aT/ax, should vanish. Indeed, the balance equation for the mean temperature (KampB 
de Feriet 19371 reduces to 

or 
aT 
8x1 

- 
~ , T + e u , - y -  =fn(x , ) .  

The additional assumption that (9)  aT/ax, x 0 would yield 
- 
Bu, z const. 

asymptotically throughout the flow. I n  view of the measured downstream increase of 
and @, the correlation coefficient G/8 'u ;  would vanish asymptotically. Measure- 

ments ($4) show, however, that  this correlation coefficient retained a relatively high 
value (roughly 0.6) in the entire test volume; yet assumption (9)  was (also experi- 
mentally) found to be well approximated in the same test volume. 

With assumptions (u)-(g), the equation for the balance of 82 (Corrsin 1952) reduces to 

As in the case of the turbulent energy equation, an inconsistency with transverse 
homogeneity occurs, since the left-hand side of equation (5) depends on x,, while the 
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rods 

FIGURE 1. Sketch of the shear generator and heating system. 

right-hand sidedoesnot if the fluctuations are assumed to be transverselyhomogeneous. 
Omitting negligible terms, equation (5) reduces to 

where x = y(a8/axi) (%/ax,) is the temperature fluctuation dissipation rate. 

the special forms 
The equations for one-point temperature-velocity covariances (Corrsin 1953) take 

The equation for 8u, reduces to 0 = 0 by symmetry 

3. Experimental facilities and instrumentation 
The wind tunnel used for the experiments of Rose (1966), Champagne et al. (1970), 

and Harris et al. (1977) was also used in the present investigation; an essentially 
constant mean pressure over the test section was attained by adjusting the vertical 
walls. The shear-turbulence generator used by Harris et al. (1977) was modified by 
replacing the exit turbulence-generating rods with heating rods. The generator 
(figure 1) consisted of a set of tent parallel channels, 2.76 em wide and 61 em long, 
separated by aluminium plates of thickness 0.318 em. The mean speed in each channel 
was adjusted with (throttle) screens of various mesh sizes inserted in slots near the 
upstream end. 

t The shear-flow generators used in the experiments of Champagne et al. (1970) and Harris 
et al. (1977) also consisted of ten parallel channels and not twelve, as mentioned by mistake in 
these two papers. 

F L M  104 I1 
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The original 0.318 x 0-318 cm square rods a t  the channel exits were replaced by 
round heating rods (Chromalox TSSM 14XX, special order) of diameter 0.508 cm and 
resistance 25 ohm. The conventional grid solidity (i.e. the ratio of the projected cross- 
sections of the rods and plates over the total tunnel cross-section) was thus increased 
from 0.206 to 0.268. Of course the effective solidity is higher due to the thickness of 
the boundary layers on the separating plates. I n  any case, the change of grid solidity 
was in the correct direction for minimizing turbulence field changes (compared with 
the data of Harris et aZ.), because the wake behind a square rod is wider than that 
behind a round rod of equal projected area. Another favourable indication was that 
the turbulent intensity produced by a square-mesh, square-rod grid of solidity 0.206 
was roughly equal to that produced by a square-mesh, round-rod grid of solidity 0.268 
(Corrsin 1963, figure 6; the curves were linearly extrapolated to lower solidities). The 
rods were heated by the 110 volt a.c. power line through individual variable trans- 
formers. To minimize the effect of heat losses through the top wall of the test section, 
two silicone-rubber, flexible heaters (Electroflex Heat Inc., with thickness approxi- 
mately 0.15 cm and rectangular areas 28 x 30.5 cm and 30.5 x 30.5 em, glued on 
aluminium sheets 0.08 ern thick) were fastened on the inner side of the tunnel top; 
the temperature of these heaters was adjusted to match the desired local mean 
temperature of the flow. 

Hot-wires powered by constant-temperature anemometers (DISA 55D01) were used 
as velocity transducers. The streamwise velocity was measured with a 5 pm diameter, 
1-2 mm long, tungsten wire (DISA 55Pl l ) ,  while the transverse components were 
measured with a tungsten X-wire probe (DISA 55P51) with wires 5 p m  diameter, 
1-2 mm long, and 1.0 mm apart. For the transverse derivatives of the streamwise 
velocity, a parallel wire probe (DISA 55P71) with wires 2.5 pm diameter, 1.2 mm 
long, and 0.5 mm apart was used. The mean temperature and the reference tempera- 
ture upstream of the heating system were monitored with two glass-coated thermistor 
miniprobes (Fenwal GC32M21). The fluctuating temperature was measured with a 
1 pm diameter, 0-4 mm long platinum ‘cold’ wire (DISA 55P31), operated a t  a con- 
stant current 0.25 mA with the use of a home-made electronic circuit (Tavoularis 
1 9 7 8 ~ ) .  A second ‘cold’ wire (home-made), 0.6 pm diameter, and 0.8 mm long, was 
placed about 0.6 mm from the DISA cold-wire when the transverse temperature de- 
rivatives were measured. The velocity sensitivity of the cold wires was measured and 
found to be negligible, while their frequency response to temperature fluctuations was 
estimated to be fairly flat up to 3 kHz for the 1 pm wire and up to 5 kHz for the 
0.6 pm wire ( -  3 dB points), according to La Rue, Deaton & Gibson (1975) and 
Hrajstrup, Rasmussen & Larsen (1976). A PDP 11/40 digital minicomputer allowed 
discrete data acquisition and processing. Details of instrumentation and experimental 
procedures and accuracies can be found in the dissertation of Tavoularis (19786). 

4. The measurements 

4.1. A preliminary study of the heating eSfeects 

A study of the temperature field produced by a single heating rod was performed first, 
as an initial test of the temperature-measuring system, to serve as a guide for the final 
adjustment of the mean temperature gradient, and because of its possible intrinsic 
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FIGURE 2. Temperature field of rod number 5 :  (a) the mean temperature rise, ( b )  the r.m.s. 
temperature fluctuations. 0, zl/h = 5.0; 0, zl/h = 7.5; 0, zl/h = 9.5; 0. zl/h = 11.0. 
The arrows indicate location of the heated rod. 

interest. For this purpose, rod number 5, whose axis was positioned at  x2/h = 0.55 
(see figure 1 for an explanation of the symbols), was the only one heated. The down- 
stream development of the resulting vertical profiles of the mean temperature rise 
AT ( E - T,; T, is the flow temperature upstream of the shear-flow generator) and 
the r.m.s. temperature fluctuation 8’ are shown in figure 2. The expected slight asym- 
metry due to mean shear is observed in both sets of profiles. The downstream decrease 
of the maximum temperature rise ATmax is shown in figure 3, together with a family 
of isotherms in the vertical centre-plane of the tunnel. 

4.2. Development of the velocity and temperature fields 

The velocity field was essentially the same as the one of Harris et al. (1977). Several 
measurements were repeated in order to test the effects of the system modifications, 
ageing of the apparatus, and differences in measuring techniques. The present (digital) 
techniques are presumably more reliable than those used in the earlier study. Since the 
heating effect on the velocity field was negligible (see 3 5 .  l ) ,  all velocity measurements 

11-2 
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FIGURE 3. Temperature field of rod number 5: ( a )  downstream development of the maximum 
temperature rise; ( b )  isotherms in the vertical centre-plane of the tunnel. The arrow indicates 
location of the heated rod. 
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FIGURE 6. Vertical profiles of the mean temperature rise, the r.m.s. temperature fluctuations, 
and the heat transport correlation coefficients. 0, z,/h = 7.5;  A, x,/h = 9-5; 0, xl/h = 11.0. 
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were performed in the unheated flow, so that the hot-wire signals were free of 
fluctuating temperature contamination. Corrections for slow mean ambient tempera- 
ture drift, measured with a thermistor positioned close to the hot-wire, were applied 
to the signals. 

The mean velocity profiles in the vertical centre-plane (x3/h = 0.0) at three down- 
stream stations, x,/h = 7-5, 9.5, and 11.0, were practically indistinguishable from 
each other and presented excellent linearity for 0.1 < xz/h i 0-8. The straight lines 
fitted to the experimental points had a slope dg1/dxl = 46-8 s-l, which was 2.5 % 
lower than that during most of the measurements of Harris et al. Uniformity of 
dV1/dx2 in the x3 direction was not checked independently, but agreement within 3 yo 
among the values a t  x3/h = 0.0, 0.25, and -0.25 was reported by Harris et at. The 
centre-plane speed Vc was 12.4ms-l, equal to that during most of the earlier 
measurements. 

Figure 4 shows vertical profiles of the mean velocity, the r.m.s. turbulent velocities, 
and the shear-stress correlation coefficient at xl/h = 11.0. Similar profiles at xl/h = 7.5 
and 9-5 presented slightly higher scatter but smaller wall effects. The downstream 
development of the mean squared turbulent velocities and the shear-stress correlation 
on the centre-line of the tunnel is shown in figure 5. The mean squared velocities were 
fitted by least-squares parabolas for convenience in later calculations. This choice of 
fitted polynomial agrees well with the present measurements, although contradicted 
by some rough theoretical arguments by Harris et ad., who predicted an asymptotically 
linear increase of turbulent kinetic energy. 

The mean temperature profiles at  three downstream stations are shown in figure 6. 
The fitted straight lines, having a slope dp/dxz = 9.5 "C m-1, demonstrate the good 
linearity and downstream constancyf of the mean temperature gradient for xl/h > 7.5 

t Recall that, unlike the velocity case, this constancy is not inferred a priori from the sim- 
plified balance equations. 
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and 0.2 < x2/h < 0-8. The centre-line temperature rise A Z  was constant (about 1.5 "C)  
in the test section and low enough to guarantee negligible buoyancy effects on the 
velocity field. 

Figure 6 gives profiles of the r.m.s. temperature fluctuations andof the temperature- 
velocity correlation coefficients in the vertical centre-plane of the tunnel. The degree 
of transverse homogeneity of 8' is comparable to that of the r.m.s. turbulent velocities 
for 0.3 < xz/h < 0.8. The correlation coefficient profiles show better uniformity than 
those of 8' and u;, due to the inherent normalization. 

The downstream development of the centre-line B2, Bu,/e'u;, and Bu,/B'u; is in 
figure 7 .  For x,/h < 4, decay of the initial temperature fluctuations exceeds produc- 
tion, b_ut farther downstream a monotonic increase in @takes place. @was normalized 
with - 8:ef w 0.01 1 O C 2 ,  measured with a cold-wire held fixed at xl/h = 5.75. Variations 
in Ozef, attributable - _  mainly to line voltage fluctuations, were about & 5 %. The f 3 % 
scatter in 82/8$t reflects mainly the finite sampling interval errors. For convenience, 
the data in the range 6.0 < xl/h c 11-0 were fitted with a least squares cubic poly- 
nomial. Both correlation coefficient magnitudes increase slightly downstream. The 
shear correlation coefficient decreases slightly over the same range. 

- _  

4.3. One-point moments and correlations 

Typical values of the skewness and flatness factors of the three turbulent velocities 
and temperature, measured on the centre-line of the tunnel at xJh = 11.0, are given 
in table 1. Mixed moments are included. 

The systematic errors involved in these measurements (due to electronic noise, 
mixed velocity-temperature sensitivities and possible calibration inaccuracies) were 
estimated to be much smaller than the random experimental errors (due to finite 
sampling intervals, slight changes in the wind tunnel speed, and other unpredictable 
sources). Typical values of the random errors, expressed as standard deviations of an 
ensemble of measurement, were 0.03 for the skewness factors and 0.05 for the flatness 
factors. 

All flatness factors are close to 3.0, the value for a normal random variable. How- 
ever, some non-normal behaviour of u1 and u2 is demonstrated by the non-zero values 
of their skewnesses. 

The negative sign of the skewness of u1 may be a consequence of the downstream 
increase in u;. Negative values of uL (coming with fluid from positions with higher xl) 
tend to have larger amplitudes than do positive values of ul ;  since, by definition, 

- 
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FIGURE 8. Streamwise turbulent velocity autocorrelation along the three co-ordinate axes. 

0, Rll(V, 0, 0 ;  0); a f Rl,(O, T ,  0; 0); + 9 Rll(0, 0,  r; 0). 

?il = 0, a negative 2 is produced. This argument was offered by Corrsin (1950) for the 
skewness of transverse velocity in a transversely inhomogeneous shear flow. Similarly, 
the skewness of u2 may be attributable to the transverse inhomogeneity. The sign of 
a%/ax, (figure 4) is appropriate, and the magnitude is about half of aq/ax,. 

All three second-order mixed correlation coefficients, shown in table 1,  are dis- 
tinctly non-zero. At first glance, the near equality of W 2 / u ; u i  and GlB‘u;; might 
seem to support the (‘Reynolds’) analogy between momentum and heat transport, 
although the fact that B&/B’u; is higher in magnitude than &/b”u; is a bit surprising 
since there is no mean temperature gradient along xl. This topic will be further dis- 
cussed (§§ 5.3 and 6.3). The third-order mixed correlation coefficients show small 
departures from zero; the highest magnitudes are those involving velocities only. 
Third-order correlations are, in general, subject to higher experimental errors. 

4.4. Two-point correlations 

The components of a Cartesian, two-point velocity fluctuation correlation coefficient 
tensor can be defined as 

ui(x;t)uj(x+r;t+7) 
u;(x) a,’(x + r )  ’ Rij(r1, r2, r3; 7 )  = (9) 

where homogeneity and stationarity have been assumed for the arguments of Rii; 
Rij is called an autocorrelation function when i = j, and a cross-correlation function 
when i =k j. The temperature autocorrelation R,, and the temperature-velocity cross- 
correlation vector RBui are defined similarly. 

Correlations along x2 and x3 were measured with two probes mounted on a traversing 
device with 130 mm maximum separation and 0.2 mm accuracy. To avoid the wake 
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of the upstream wire, small-separation regions of the correlations along the x1 axis 
were measured by extrapolating to r3 = 0 the corresponding R(rl, 0,  r,; 0) correlations. 
For separations larger than about 100 mm, the wake interference effect was found t o  
be negligible (see also Champagne et al. 1970). Some correlations along x1 were measured 
from temporal signal records of a single probe with the use of Taylor’s ‘frozen flow’ 
approximation as R(r, 0,O; 0) z R(0, 0,O; r/Dl). 

The validity of this approximation for R,, and Roue was confirmed by direct measure- 
ments (see figures 10 and 11); Champagne et al. (1970) confirmed equation (10) for the 
velocity correlations in the lower shear case. 

(10) 
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FIGURE 11. Temperature-transverse-velocity cross-correlation along the three co-ordinate axes. 
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Corrections for electronic noise and for velocity sensitivity of the cold-wire were 
applied to the measurements when necessary; they were at most 1 % of the maxima 
of the corresponding curves. 

The streamwise velocity autocorrelations along the three Cartesian axes, shown in 
figure 8 (fixed probe on the centre-line, a t  x l / h  = 11.0), are in good qualitative agree- 
ment with the data of Harris et al. (1977). Only Rll(O, 0, r ;  0) has a region of appreciable 
negative values. Figure 9 shows the autocorrelations of the three velocity components 
along the x1 axis, at ~ , / h  = 11.0, computed from single-probe time signals with the 
use of Taylor’s approximation. None of these curves reaches a significant negative 
value over the r range covered. 

The temperature autocorrelation curves along the three Cartesian axes are shown 
in figure 10 (fixed probe a t  xl/h = 11.0). The three functions are distinct (they would 
be equal in an isotropic field). Finally, the temperature-transverse-velocity cross- 
correlation coefficients along the same axes are shown in figure 11. Discussion about 
the above results will be given later, in 0 6.2. 

Harris et al. have presented isocorrelation contours for R,, and R,, in the (xl, x2) 
and (x,, x3) planes. Similar isocorrelation contours for Re, and Reue are shown in figure 
12. The isocorrelation contours in the centre-plane parallel to the mean velocity 
gradient have a tilted oval shape, presumably due to the mean shear. In  contrast, 
contours in the centre-plane perpendicular to the mean velocity gradient are roughly 
symmetric with respect to both rl and r3. 

The lines in figure 12 represent the ‘best’ families of similar ellipses fitted to the 
data. The isocorrelation contours are expected to attain elliptical shapes for 

r < h (r2 = r t + r i + r : )  

but not for higher r (for an exampIe of a Taylor’s expansion of the correlation coeE- 
cients producing elliptical contours a t  small r ,  see Champagne et al. 1970). The shapes 
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0 10 20 30 40 0 10 20 30 40 

r ,  (mm) r ,  (mm) 

FIGURE 12. Isocorrelation contours (a)  RoB(rl, r2, 0; 0) ,  (a) -Roua(rl, p2, 0; 0) ,  (c) Roo(r1, 0, r3; 0 ) ,  
(d) - Rou,(rl, 0, r3 ; 0) .  The lines represent the optimal families of ellipses fitted to the data. 

and orientations of the ellipse families are shown in table 2. The R,, and R,, contours 
were taken from Harris et al. (1977). 

Streamwise space-time correlations for R,,, R22, and R,, were measured by Harris 
et al. (1977). Figure 13 shows a typical family of temperature space-time correlations, 
measured with two wires separated in the streamwise direction. Marked with vertical 
lines on this figure are the times 

rc E r/Oc, 

corresponding to the time required for a fluid particle travelling with the local me n 

with the positions of the maxima of the corresponding correlations; a significant 
deviation is observed only for the largest probe separation, which, however, was 
obtained with the upstream probe positioned in the developing part of the flow. The 
envelope of the maxima of all correlations represents the temperature autocorrelation 
in a frame convected with the local mean speed. If Taylor’s approximation were valid 
for large probe separations, this envelope would be a horizontal line. 

speed to cover the distance between the two probes. The times 7, almost coincid b ~ 
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Axis ratio 

2.0 
1.7 
1.3 
1.8 
2.6 
2.7 
3.4 

TABLE 2 

Angle of major 
axis with x1 

25" 
0" 

54O 
0" 

13" 
0" 

16" 

1 .o 

0.8 

0-6 

0.4 

0.2 

0 50 100 150 
T (ms) 

FIGURE 13. Temperature space-time correlations in the streamwise direction. 53, r = 25 mm; +, r = 75mm; 0 ,  r = 150mm; 0, r = 300mm; V, r = 500mm; A, r = 835mm; 0, 
r = 1555 mm. The vertical arrows indicate the corresponding times 7, = .loc. 

4.5. One-dimensional frequency spectra 

Spectra were measured with a digital harmonic analysis technique; details are given 
by Tavoularis (1978 b).  Corrections were applied for electronic noise and for verocity 
sensitivity of the temperature wire when necessary. The spectra have not been cor- 
rected for wire-length errors and separation, but Wyngaard's (1968, 1969, 1971) 
estimates of these errors for the power spectra of the velocity and temperature 
fluctuations are included in the appropriate figures. No such estimates are available 
for cross-spectra; for this reason, cross-spectra are presented up to only about 3 kHz' 
( z 0.25 fK; fK = Vl(c/v3)~/27r is the convected passing frequency of the Kolmogoroff 
microscale), where the wire length errors are, presumably, small. Errors due to 
differences in the time constants of the hot and cold wires (see Mestayer & Chambaud 
1979) were effectively reduced by low-pass filtering the signals to 3 kHz; all sensors 
are expected to have good frequency response in this bandwidth. 

The one-dimensional frequency spectra Fll( f) of u1 at three downstream stations 
along the tunnel centre-line are shown in figure 14. The values of Fl,(f) a t  all frequencies 
increase downstream, corresponding to the increase of the turbulent kinetic energy and 
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f (Hz) 
FIGURE 14. One-dimensional spectra of the streamwise turbulent velocity. 

a, Z,/h = 7.5; 0, z,/h = 9.5; 0, Z, /h  = 11.0. 

10-3 
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100 10' 107 103  1 0 4  

f (Hz) 
FIGURE 15. One-dimensional spectra of the transverse turbulent velocities. 

u, F , , ( f ) ;  0 9  F33(f). 
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FIGURE 16. One-dimensional temperature spectra. 
0, x,/h = 7.5;  + , x,/h = 9.5; 0, X J h  = 11.0. 

f (Hz) 
FIGURE 17. One-dimensional cross-spectra of the shear stress and the transverse 

heat-transport correlations. 0, FI2(f) ; , EtOv,(f) .  

Reynolds number. The largest relative increase is a t  the low-frequency region and is 
consistent with the downstream increase of the integral length scales. All three spectra 
increase slowly with increasing frequency up to about 15 Hz. A near power law region 
occurs between roughly 50 Hz and 1 kHz, with a faster decrease starting at f z 1 kHz, 
corresponding to the viscous region; this drop-off is faster than the one due to possible 
wire-length errors. 
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L,,,, = 57 mm, h,, = 5.8 mm 

Ll1,2/Lll,l = 0.33 

L22,llLll.l = 0.23 
L33,i/Lii,~ = 0’34 
L12*1/L11*1 = 0.90 
-L12*2/Lll,l = 0.4ot 
L12,8/Lll*l = O - l O t  

Lee.1/L11.1 = 0.76 

Lee,3/L11,1 = 0.31 

Leu,.1/L11.1 = 0.60 
Leu2.2/L11,1 = 0.53 
Leu,.3/L11,1 = 0.24 

Lll,3lLll,l = 0.25 L&9,2/L11,1 = 0’36 

h12/hll = 0.67 
h13/hll = 0.68 
h2,/hl, = 0.68 
h3,/hl, = 0.79 

h,zjl/hll = 0.87 
he2/hll = 0.64 
he3/hll = 0.64 

t From Harris et al. (1977). 

TABLE 3. Integral length scales and microscales ( q / h  = 11.0). 

Figure 15 shows the one-dimensional frequency spectra of the transverse velocity 
components u2 and us, a t  x l /h  = 11.0. The low-frequency regions of both spectra show 
a slight increase with increasing frequency, more pronounced in the case of F&). 
At higher frequencies both decrease monotonically, and they are nearly identical for 
frequencies higher than about 700 Hz. 

The one-dimensional temperature spectra a t  three downstream stations are shown 
in figure 16. As in the case of Fll(f), Fe8(f) increases downstream a t  all frequencies, 
corresponding to the increase of @. 

The main cross-spectra of interest are the shear-stress spectrum F12(f) and the heat- 
transfer spectrum FBu,(f). Figure 17  shows their magnitude a t  x l /h  = 11.0. The co- 
herency functions (indicating the degree of local isotropy) and further discussion 
about the spectra will be given in the second paper. 

4.6. Integral length scales and microscales 

The Eulerian integral length scales of the velocity and the temperature fluctuations 
represent average sizes of the velocity and temperature structures. Ideally, this scale 
is defined as the integral of the correlation function. In  principle, however, a non- 
infinite random record or field must have zero integral scale (see, for example, the 
discussion by Comte-Bellot & Corrsin 1971), so some sort of equivalent quantity is 
normally computed from data. Here we follow the common practices of integrating 
the corresponding two-point correlation coefficient to its first zero, if it has one, 
otherwise to  a distance or time a t  which the correlation becomes ‘negligible’. Alter- 
natively, the streamwise integral scales can be computed conveniently by extrapolating 
the corresponding one-dimensional spectra to zero frequency. The integral scales com- 
puted from extrapolated spectra should, in principle, be equal to the injnite integrals 
of the corresponding correlation functions; however, in many experimental situations, 
the two procedures described here have given nearly equal scales. 

Table 3 contains integral length scale values computed from correlation functions 
a t  x l /h  = 11.0; all are normalized with respect to Lll,l. As expected, appreciable 
departures from the corresponding isotropic relations occur. For example, the ratios 
Lll,2/Lll, and Lll, 3/Lll, were 0.33 and 0.25, respectively, whereas they would be 
0.50 in isotropic turbulence. 
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FIGURE 18. Downstream development of the streamwise integral length scales 0, L,,,, (from 
correlations) ; 0 ,  Lll,l (from spectra) ; a, Lee,1 (from correlations) ; A, Lee,1 (from spectra). 

Figure 18 shows the (essentially linear) downstream growth of L,,,, and Lee,1 along 
the tunnel centre-line. The values computed from spectra were not appreciably 
different from those computed from correlations. Finally, x2 profiles of these scales 
showed transverse homogeneity within the (rather large) experimental scatter. 

The velocity (‘Taylor ’) microscales and the temperature microscales were measured 
according to  the (isotropic turbulence) definitions (indices not summed): 

and 

Table 3 contains the values at  x,/h = 11.0. All values have been corrected for 
electronic noise and for wire length and separation. The transverse microscales are, 
in general, less reliable than the streamwise ones, since they may contain errors due 
to differences in the frequency response of the parallel wires; as mentioned earlier, 
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FIGURE 19. Downstream developmept of the streamwise velocity and 

temperature microscales. 0, All; 0, Aol. 
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FIGURE 20. Transverse profiles of the streamwise velocity and temperature microscales. 

such errors were reduced by matched low-pass filtering of the two signals. Since the 
energies of different velocity components were unequal, these particular velocity 
microscales were not expected to be equal, even if the condition of local isotropy were 
satisfied. I n  contrast, the unequal values of the three temperature microscales is an 
explicit demonstration of the departure from the local isotropy of the temperature field. 

The downstream development of A,, and A,, on the tunnel centre-line (figure 19) 
shows approximate constancy of both for x,/h > 7.0. On the other hand, both A,, and 
A,, increase slightly in the mean shear direction (figure 20). This is consistent with 
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01 01 

FIGURE 21. Probability density functions of the turbulent velocities and the temperature 
fluctuations. 0, experimental values ; - - - , normal distribution. 

equations ( 2 )  and (6); assuming the isotropic relations E cc uf/A?, and x cc 02/Ai, 
approximately valid, A,, and A,, should increase as al(x2) increases in the x2 direction 
(all other terms were roughly independent of x 2 ) .  

4.7. Probabilities 
Probability and joint probability densities were computed from discrete signal records. 
Each sample contained about 100000 data points and was about 5 min long. 

Measurements of the p.d.f.s (probability density functions) of the three velocity 
components and the temperature are shown in figure 21; a normal p.d.f. with the 
same standard deviation is included for reference. The p.d.f.s of u3 and 8 are almost 
normal, while those of u1 and u2 show small departures from normality, consistent with 
their slight skewnesses. 

Equiprobability density functions of the pairs (u,, uz), (0, u,), and (0, u2) are shown 
in figure 22; the dashed lines are the corresponding contours of jointly normal p.d.f.s 
with the same correlation coefficients and standard deviations. All pairs appear to be 
roughly jointly normal, although the skewnesses of u1 and u2 imply that the departures 
from normality are measurable. These joint p.d.f.s can be used to calculate the marginal 
expectations (by integrating with respect to one variable) and the conditional prob- 
abilities (by keeping one variable constant); since all pairs are nearly jointly normal, 
however, none of these quantities is expected to reveal any additional startling 
characteristics of the fields. 
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FIGURE 22. Joint probability density functions. (a) Pu,,u;,u2/u; (a,  /3), ( b )  Po,s:.,,ug(a, p), and (c)  
Pu,,u;,eis.(&fi). 0, 2’ = 0.15; 0, P = 0.10; 0 ,  P = 0.05; 0, P = 0.01. - --, jointly normal 
distribution. 

5. Analysis of the experimental results 
5.1. Preliminary tests 

Several characteristic magnitudes of the velocity and temperature fields on the tunnel 
centre-line are summarized in table 4. All values correspond to smooth curves fitted 
to the data by a linear least-squares technique. 

A rough check of the buoyancy effect was necessary to ensure that heat was indeed 
a passive contaminant. A relevant parameter, representing the ratio of the turbulent 
energy production by density differences to the turbulent energy production by the 
mean shear, is the ‘flux Richardson number’, 

- 

where g is the gravitational acceleration ( NN 9.8 m s-~) .  
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Quantity x l /h  = 7.5 xl /h  = 9.5 x , / h  = 11.0 Units 

12.4 
46.8 
0.280 
0.100 
0,156 
0.536 
0.45 
1.5 
9.5 
0.0119 
0.53 
0.42 

44 
31 

5.8 
5.1 
1.94 
0.204 
0.263 

12.4 
46.8 

0.380 
0.134 
0.203 
0.717 
0.45 
1.5 
9.5 
0.0134 
0.56 
0.435 

51 
38 

5.8 
5.1 
2.65 
0.1 97 
0.254 

12.4 
46.8 

0.475 
0.165 
0.248 
0.888 
0.45 
1.5 
9.5 
0.0156 
0.59 
0.45 

57 
43.5 
5.8 
5.1 
3.42 
0-1 77 
0.228 

t Turbulent energy dissipation rate, from equation (2). 
$ Kolmogorov microscale, 7 (va/e)*. 
3 Temperature dissipation microscale, yS ( . ~ S / E ) * .  

TABLE 4. Summary of experimental values. 

m s-l 
8-1 

m2 s - ~  
m2 s - ~  
ma s - ~  

m2 sF2 

"C 
"C m-1 
"C2 

- 

- 
- 

mm 
mm 
mm 
mm 
m2 s-3 

mm 
nun 

The present experiment corresponds to stable density stratification (ap/ax, > 0 ) ,  
so that a positive value of Rf is expected. Large positive values of Rf (greater than 
about 0.2) have a suppressive effect on the vertical turbulent component u2 and, by 
ncnlinear interactions, on the turbulence as a whole (Tennekes & Lumley 1973). It 
turns out that Rf M 0.002 4 0.2,  so buoyancy had a negligible effect on the velocity 
field. 

A related parameter, representing the squared ratio of the time scales associated 
with production by buoyancy and production by mean shear, is the 'gradient 
Richardson number ' 

Here, R, M 0.002 < 1, another confirmation of the negligibility of buoyancy effects. 
The inertial effect of temperature-induced density differences on an accelerating 

flow can be roughly tested with the use of relations (15) and (16) after replacing g by 
the r.m.s. fluid particle acceleration 

V is the Lagrangian velocity, 7 is the Lagrangian time microscale. For rough calcu- 
lations, Tz z u", and 7 z 5h,,/u; (Shlien & Corrsin 1974), so that a M 10 m s - ~ .  Thus, 
the inertial disturbances caused by heating are also negligible away from the heating 
rods. 
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Measures of 
downstream 

inhomogenei ty 

0.012 
< 0.01 

0.025 
< 0.001 

0.015 
< 0.01 

0.02 
0.005 
0.004 

Measures of non-stationarity 
in a frame conveted with 

the centre-line speed 
A 

0.17 
< 0.01 

0.35 
< 0.01 

0.21 
< 0-01 

0.28 
0.07 
0.05 

0-23 
< 0.01 
0.46 

< 0.01 
0.28 

< 0.01 
0.38 
0.09 
0.07 

TABLE 5. Measures of downstream inhomogeneity and of 
non-stationarity in a convected frame (z,/h z 11.0). 

0.059 
< 0.01 

0.12 
< 0.01 

0.072 
< 0.01 

0.10 
0.02 
0.02 

The analysis of 5 2 has shown that, in principle, neither the velocity, nor the tem- 
perature fields can be exactly homogeneous. Therefore, it is relevant to look a t  
departures from homogeneity. 

Data in $ 4  show that deviations of the mean square velocity and temperature 
fluctuations and of the one-point covariances in the central core of the tunnel (extend- 
ing transversely over several integral length scales) did not exceed 5 % of the corres- 
ponding centre-line values. Larger deviations (about 10 %) occurred for the integral 
length scales L,,,, and Loo,,, attributable to large experimental scatter. The only 
systematic deviations from transverse homogeneity were exhibited by the micro- 
scales A,, and Ael. Both increased slightly upwards, with maximum deviations in the 
central core of the tunnel about 8 %. 

A general criterion for the downstream spatial near-homogeneity of the statistical 
quantity N is (see, for example, Champagne et al. 1970) 

where L is a maximum distance of measurable correlations, taken for convenience to 
be Lll, ,. The above criterion for characteristic magnitudes of velocity and temperature 
fields is summarized in the first column of table 5 ;  the values are rough averages over 
the wind-tunnel final test section (9-0 < xl/h < 11.0). In these cases, equation (18) is 
well satisfied. 

The temporal evolution of a homogeneous shear flow should be independent of the 
local mean convection speed, and it is best examined in a frame convected with such 
a mean speed (in the present case, the centre-line mean speed u,). A relation of the form 

where T is a characteristic time in the convected frame, is a test of the near-stationarity 
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of any turbulent characteristic magnitude N .  Using Taylor’s ‘frozen flow ’ approxi- 
mation, equation (19) can be written as 

A natural characteristic time in the convected frame is 

Tl = Joa Rll(UC7, 0,0;7)& w 0.061 s 

(Harris et al. 1977). A simple kinematic time of the most energetic eddies (the ‘eddy 
turnover time ’) is 

Lll, 1 T, 7 x 0.081 S ,  
U1 

roughly the same as Tl. Another characteristic time, that of the mean strain rate, is 

T3 = (z)-’ w 0.021 s, 

significantly smaller than the other two. 
Tests of the moving-frame non-stationarity of the flow are provided in the last 

three columns of table 5. Equation (19) is well satisfied in most cases and fairly well 
in the others. L,,,,, and (especially) 4” and 82 appear to depart appreciably from 
stationarity . 

5.2. The governing equaticns 
The balance of the mean turbulent kinetic energy is approximately described by 
equation (2). The convection and production terms are directly measurable with 
typical error bounds -t 5 yo, while all omitted terms (estimated or measured) were 
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FIGURE 24. Temperature fluctuation balance. -, - Bu,dT/dx,;  . . * . ., + o l d @ / d x l ;  - - - 9 x  

from the difference of the other two terms; -.  -, x from the measured mean square tem- 
perature derivatives. The vertical lines represent estimated error bounds. 

less than 1 yo of the production. The dissipation rate can be conveniently estimated 
as the imbalance of the other two terms in equation ( 2 ) ,  since its direct measurement 
is subject to larger experimental inaccuracies. Figure 23 shows that the three terms 
in equation ( 2 )  increase in magnitude downstream; however, their ratios remain 
roughly constant, with transport being about 45 % of the production by the mean 
shear. The sum of five independently measured mean-squared velocity derivatives 
differs by only 8 % from its locally isotropic estimate based on the estimated dissi- 
pation rate. 

The balance of 82 is approximately described by equation (5) or, after omission of 
negligible terms (measured to be less than 1 % of the production terms), by equation 
(6). Figure 24 shows the downstream development of the three terms in equation (6); 
estimated error bounds are included. The production term was measured directly. 
The transport term (especially a t  10-0 < x l /h)  was sensitive to the choice of the 
smooth curve fitted to the @data. A parabola was clearly inadequate for the accurate 
estimation of d82/dxl; a cubic polynomial was the simplest curve to represent the data 
fairly well in the range 6.0 < x l /h  < 11.0; a fourth-order polynomial gave a better fit 
but introduced inflection points attributable to scatter rather than the physical 
process. The thermal ‘dissipation’ rate x could be estimated either as the imbalance 
of the other two terms or directly from the measured mean-squared temperature 
derivatives (see measurement of microscales, 3 4.6).  The two procedures gave values 
differing by about 30 yo. Such a difference remains inexplicable, since it is somewhat 
larger than the estimated experimental errors; it seems likely that the actual x lies 
between its two estimates. 

The simplified balance equations for the temperature-velocity covariances, equa- 
tions (7) and (8 ) ,  contain the pressure covariance terms which cannot be measured 
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accurately enough with instruments available a t  present. The ' dissipation ' terms (last 
terms on the right-hand side of both equations) can be measured with present tech- 
niques, but the accuracy would be limited. The directly measured terms a t  x l /h  = 11.0 
were as follows : - 

aeu, 
i f -  , ax, 

- dDl 
ax, 

M 0.30 "C m s-,, - Bu - M 1.06 "C m s-,, 

~ - 
~ dT 

-u u - M 1.19 "C m s-,, - 0.13 "C m s-,, 
Z d X ,  

- a F  au2 ae 
ax, ax, ax, -u2- M -1-56"Cms-2, (y+v)-- M -0 .03"~ms-2 ,  

- ~ 

< 0.01 "C m s - ~ .  

5.3. Calculation of characteristic transport parameters 

The mean strain rate tensor {agi/axk + aifk/axi> has only two non-zero components, 
both equal to dDl,ldx2. As in any parallel mean flow, two of its principal axes form 
k 45" angles with x,; the third one coincides with x3. 

The mean turbulent Reynolds-stress tensor { - i i i i k }  takes the form 
- ~ 

0 u; 

Following Corrsin (1957) we look a t  the three principal stresses, 

J 
- 

-g = -u2 3' 

The directions of the first two principal axes are, respectively, 

aa,ab = +arctan (yz) __ (23) 

The ratios ga/crb and as well as the angle a, were nearly constant within the 
test volume (table 6) with values close to those reported by Harris et al. (1977) and 
similar to those in turbulent boundary layers and channels (Corrsin 1957). 

The turbulent momentum diffusivity tensor is, in general, of fourth order (see, for 
instance, Hinze 1975). However, its only distinct measurable component is the tradi- 
tional (scalar) 'turbulent viscosity ' or 'eddy viscosity', 

The thermal turbulent diffusivity tensor Dii (Batchelor 1949) in the present case 
has two distinct measurable components 

- - 
- eu, - eu2 

D12 - D,, -. 
dT/dx2' dT/dx ,  

The latter is the traditional 'turbulent thermal diffusivity ' or 'eddy diffusivity', yT. 
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xJh ... 7.5 9.5 11.0 

ohlob 4.2 4.3 4.3 
g a l g o  2.0 2.1 2.1 
~l.["l 20 20 20 

g+ 1.06 1.11 1.12 
D12lDZ2 - 2.1 - 2.2 - 2.2 

RA, 
%I 

=, 

VT/V 107 145 179 
YTIY 72 93 114 

B 1.36 1.48 1.53 
128 147 160 
205 238 266 

5 RAg 36.9 36.0 34.4 

P A O t  69 (79) 77 (91) 86 (102) 
PAel 129 150 167 

'pA,t 12.2 (16.0) 10.7 (15.0) 10.5 (14.6) 
he 
7ui-51 0.27 0.27 0.26 
7e[slt 0.093 (0-12) 0-087 (0.12) 0.088 (0-12) 
7 e I T u t  0.34 (0.44) 0.32 (0.44) 0.34 (0.46) 

t The first values correspond to 31 estimated from the imbalance of transport and production 
in equation (6) ; the values in parentheses correspond to x computed from the sum of the mean- 
squared temperature derivatives. 

TABLE 6. Characteristic transport parameters. 

The ratios vT/v  and y T / y  increase rapidly downstream (table 6)' demonstrating the 
increasing importance of turbulent diffusion with respect to molecular diffusion; never- 
theless, the turbulent Prandtl number uT ( = v,/Y,) and the ratio of thermal diffusi- 
vities D1,/D,, are nearly constant in the test volume. 

The ratio 

represents the relative strength of turbulent velocity versus temperature fluctuations. 
Here, B was slightly increasing downstream to a value near 1-5 (notice that Fulachier 
& Dumas (1976) have shown that B x 1.5 across a turbulent boundary layer). 

The turbulent Reynolds number RAg and P6clet number PAe are dimensionless 
measures of the local 'strength' of turbulence compared to the molecular actions. 
The isotropic definitions 

are ambiguous in non-isotropic turbulence, where the mean-squared velocity fluctua- 
tions and the microscales are directionally dependent. An average root-mean-square 
velocity fluctuation can be defined as 
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Although local isotropy does not apply to this flow (see second paper), some average 
microscales A, and A, can be computed from the turbulent energy and thermal fluctua- 
tion dissipation rates with the use of the isotropic relations 

and - 
8 2  x z 67-  
A:‘ (32) 

Alternatively, the streamwise turbulent Reynolds and PQclet numbers (often used 
in inhomogeneous turbulence studies) can be defined as 

Table 6 contains the values of the turbulent Reynolds and PBclet numbers in three 
downstream stations. A monotonic increase of all numbers is observed, corresponding 
mainly to the downstream increase of u (or ui). 

The dimensionless products (h,/L,) RAg and (he/Lg) PA, should be constants accord- 
ing to the dynamic similarity theories (von KbrmBn & Howarth 1938; Corrsin 1951), 
and in fact have shown only small variation during the decay of grid-generated 
turbulence (Comte-Bellot & Co&sin 1971; Sreenivasan et al. 1980). In  order to corn- 
pensate partially for the directional dependence of the integral length scales, it was 
decided to use the following ‘ average values ’ : 

As shown in table 6, (h,/L,) RAg and (As/Le) PA@ decrease downstream but slowly 
enough to be considered essentially constants. (h,/L,) RAg is somewhat larger and 
(As/Le) PAe is somewhat smaller than the corresponding values in grid turbulence. 

An intrinsic measure of turbulent activity is the relative ‘life-time’ of the energy- 
containing eddies, ru = F/e. Similarly, the time-scale re = @/x is a measure of the 
relative ‘life-time’ of temperature fluctuations. As shown in table 6, both 7u and re 
are essentially constant. 

6. Further discussion 
6.1. The downstream evolution of the velocity and the temperature Jluctmtion jields 

As shown earlier, the mean velocity gradient as well as the mean temperature gradient 
remained practically constant within the test volume 

(7.5 < xl/h < 11.0, 0.2 < x z / h  < 0.8); 

furthermore, both the velocity and the temperature fluctuation fields retained a 
reasonable degree of transverse homogeneity within the same volume. Consequently, 
the only relevant independent variable was the downstream distance x1 from the 
shear-flow generator. The wind-tunnel height, h, used for normalizing x1 is, of course, 
irrelevant in the central core of the tunnel because there are no boundary effects. 
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FIGURE 25. Downstream evolution of the normalized turbulent kinetic energy and temperature 

fluctuations. -, q~/(Lll,l&71/dzz)~; - - - , @/(L1l,ld~/dxz)z. 
- 

The width w of the shear-flow-generating channels is more meaningful as an initial 
length scale. Indeed, the integral length scales are the same order as w over the test 
region. In  any case, away from the origin there is no externally imposed length or 
velocity scale (the convection velocity & should be irrelevant because the field should 
be independent of a Galilean transformation) and the flow develops presumably under 
the influence of the mean shear only. The inverse of the mean shear (dUl/dx2)-1 can be 
considered as an imposed (constant) time scale. 

The dimensionless evolution time (otherwise interpreted as a ‘total strain’) 

5 1  dU1 
v, ax2 

T Z = -  

was used by Harris et al. in comparisons of the high-shear (Harris et al.) and the low- 
shear (Champagne et al.) cases. Such a parameter should be adequate for describing the 
development of the present flow (or flows generated with similar devices) but in general 
it cannot be used for comparisons with more complex, inhomogeneous shear flows. 

The present section is a comparative study of the downstream development of the 
velocity and temperature fluctuation fields, both of which increase monotonically in 
mean-squared value. Evidently, for each quantity the production exceeds the ‘dissi- 
pation’. A downstream increase of the integral length scales was also observed. It is 
of interest to see whether the mean-squared velocity and temperature fluctuations 
can be normalized to constant, asymptotic values. A natural way of normalizing 
and @ appears to be - 

(Harris et al.) and 
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Expressions (37) and (38) have been plotted versus 7 in figure 25. It is clear that the 
dimensionless turbulent kinetic energy is nearly constant in the downstream region 
(9 < r < 12*5), while the dimensionless thermal energy is still decreasing, suggesting 
that the velocity field has reached an asymptotic state, while the temperature field 
has not. Nevertheless, the slope of expression (38) is decreasing a t  r = 12.5, so an 
asymptotic state for the temperature field might be reached a t  slightly higher values 
of r. Another indication that the velocity fluctuation field has reached an asymptotic 
state while that of temperature had not was the fact that the shear-stress correlation 
uu/u;u; l  1 2  was nearly constant but the heat transport correlations G, f B’u; and 
- Bu,/&”ui were still increasing slowly. 

On the other hand, some results suggest that both fields evolved in comparable 
ways. The velocity and the temperature integral scales presented nearly equal rates 
of downstream increase. Both the velocity and the temperature microscales were 
nearly constant in the test volume. Although the turbulent viscosity vT and the 
turbulent diffusivity yT were monotonically increasing downstream, their ratio (the 
turbulent Prandtl number uT) was practically constant. Finally, both (AJL,) RAg 
and (A,/LB)PA, as well as both 7u and rB showed only small variations in the test 
volume. 

In conclusion, it appears that most of the velocity data reported here (the ones at  
7.5 < x,/h < 11.0) correspond to an asymptotically developed, varying flow field,? 
but only measurements near the last station (xl/h z 11.0) correspond to a nearly 
asymptotic temperature fluctuation field. 

6.2.  Correlations of the velocity and temperature 

Analogies and differences between the turbulence structure of the homogeneous shear 
flow and that of inhomogeneous turbulence can be revealed by comparisons of the 
corresponding one-point and two-point correlation coefficients. However, such com- 
parisons are only a secondary aim of the present report and they will be limited. As 
typical examples of inhomogeneous turbulence we shall consider the fully turbulent 
regions of a boundary layer and of pipe flow. Considerable similarities between the 
above flows and homogeneous sheared turbulence are expected, since the relative 
magnitudes and the orientations of the principal Reynolds stresses were roughly the 
same (Champagne et al. 1970; Harris et al. 1977). 

A comparative study of the three turbulent shear flows is given in table 7. In  the 
latter two cases, of course, the reported quantities exhibit some transverse variation; 
this is relatively slow, however, and the values in table 7 are typical. Evidently the 
one-point correlation coefficients have comparable magnitudes in the three flows. 
The differences in signs are merely a reflexion of the differences in the direction of 
ap f ax, with respect to 8gl f ax,. 

The only components of the two-point space correlation coefficient tensor 

&#l, r2, r3; 0) 

reported here were Rll(ri) and Rii(rl), i = 1,2,3, not summed. The simplified notation 

t In  an unpublished report, Sreenivasan (1979) concluded that, based on the development 
of ‘structural parameters’ introduced by Townsend (1954), an asymptotic stage of the velocity 
field was reached a t  x,/h w 5.0. 



Experiments in homogeneous sheared turbulence. Part 1 343 

- - __ 
Dl, - 0% - 0% - U1 U ,  - 

Flow RA u;u; 8"U; 8'u; D,, c: 

Homogeneous shear flow 160 - 0.45 0.59 -0.45 -2.2 1.1 

Turbulent boundary layer? 90-120 -0.42 -0.66 0.50 -2.4 1-1 
( X J h  = 11.0) 

(X , /dM = 1; SM is the 
momentum thickness) 

( r l d  = 0.25; 
d is the diameter) 

Turbulent pipe flow 80-300 -0.47$ -0.63s 0*43[1 -2.1 1-27 

t Johnson (1957, 1959). 1 Laufer (1954). 8 Bremhorst & Bullock (1970). 
jl Bourke & Pulling (1970). 7 Schwarz & Hoelscher (1956). 

TABLE 7. A comparative study of three turbulent shear flows. 

R(ri) implies that the only non-zero separation of the probes was in the xi direction. 
It was found that 

Rll(rl) > Rll ( r2)  > 'll('3) 

(the first inequality is stronger than that in isotropic turbulence where 

The same ordering of the corresponding coefficients was observed in a turbulent 
boundary layer (Grant 1958) and in channel flow (Comte-Bellot 1961). This is another 
confirmation of the close structural resemblance between these 'classical ' flows and 
homogeneous shear turbulence. 

It was observed that the temperature fluctuations follow u1 more closely than u2. 
The result 

Ree(rJ > Redrz) > Redr3) 

(figure 12) supports the latter statement. I n  an  isotropic temperature field the three 
correlations are equal. 

The heat-transport correlation coefficients (figure 13) were ordered as 

The same ordering (although with stronger inequalities) was observed for the shear- 
stress correlation coefficients R12(ri) (Harris et al., figure 12). 

The isocorrelation contours of Roe and RBILl in the xl, x2 plane have a 'tilted oval' 
asymmetric form due to the action of the mean shear, while those in the xl, x3 plane 
were nearly symmetric. Like shapes were observed for the corresponding isocorrelation 
contours of R,, and R,, (Harris et al., figures 1 0 , l l  and 14). The corresponding contours 
in turbulent boundary-layer and channel flows are of comparable shapes but some- 
what distorted by inhomogeneity. 

A comparison of the autocorrelations RI1, R,,, and Re, in a frame moving with the 
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FIUURE 26. Envelopes of the space-time correlations. - * -, Rll(oOrc, 0, 0; 7,) ; 
--- , R2JoCrc, 0, 0 ;  T ~ ) ,  from Harris et al. ; -- ReePCTc, 0, 0; TA- 

mean speed is given in figure 26. R,98(7,,) is nearly equal to R1l(Tc), while R22(7,) 
significantly lower than the other two. 

6.3. On the turbulent diffusivity tensor and th turbulent Prandtl number 

The non-zero value of the cross-component D,, of the thermal diffusivity tensor Dij  
sharply dramatizes the inadequacy of all scalar ‘eddy diffusivity ’ theories, which 
assume in effect that Dij is diagonal. The result D,, =!= 0 is not novel. Yaglom (1969) 
showed by qualitative arguments that D,, < 0 in a turbulent flow with a~l/ax, > 0 
and @/ax, < 0; he also pointed out that in general D,, $, D21, nameIy that the tur- 
bulent diffusivity tensor should not be expected to be symmetric (the latter argument 
was presented earlier by Gee & Davis (1964)). The asymmetry of Dii in a shear flow 
with constant aF/ax, and aF/ax, was proved by Corrsin (1973)’ who also derived 
explicit expressions for the components of DtL 

In  view of the earlier observation that lOu,/O’u;l > lG/O’uL(, it should not be 
surprising that lDlaJ > lDzzl. A mildly surprising fact is the near equality of the values 
of the ratio D,,/Dz2 in the three turbulent flows examined in the previous section. 
They were - 2.2 in the homogeneous shear flow, - 2.4 in the turbulent boundary layer 
(x2,/cYNI = 1.0) and - 2.1 in the fully developed pipe flow (x,/d = 0.25). 

The possible (‘Reynolds ’) analogy between heat transport and momentum transport 
in nearly parallel turbulent flows is commonly examined in terms of the ‘turbulent 
Prandtl number’ gT. ‘Perfect’ analogy corresponds to vT = 1. In  the present flow, 
vT a 1.1. The corresponding value in the turbulent boundary layer was also about 1.1 
and that in the pipe flow was 1.2. 

A simple expression for gIT in exactly homogeneous and stationary turbulence with 
uniform mean velocity and mean temperature gradients was derived by Corrsin (1  952), 
based on the assumptions of local isotropy and stationarity, and using empirical 
constants. The result is not applicable to the present experiments because the down- 
stream increase in $and @here corresponds to non-stationarity in a convected frame. 
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Deissler (1962) estimated gT in homogeneous shear flow with uniform mean tempera- 
ture gradient by solving the spectral equations of heat transfer after neglecting all 
terms corresponding to third moments. Although his solution corresponded to ‘weak ’, 
decaying turbulence, it predicted that, for sufficiently high velocity gradients, the 
turbulent Prandtl number was approximately 1, and that the two corresponding 
correlation coefficients were about - 0.5. 

7. Concluding remarks 
The simplest case in a possible series of experiments in ‘simple’ heated turbulent 

shear flows, that with uniform mean velocity gradient and mean temperature gradient, 
was measured in some detail. As in the unheated case, the properties are much like 
those in channel flows and in the fully turbulent region of boundary layers. However, 
since the basic parameters of the problem, the mean velocity gradient and the mean 
temperature gradient, were not varied, it  was not possible to examine how their 
variation would affect various transport and mixing properties, in particular the 
temperature-velocity correlations, the components of the turbulent diffusivity tensor, 
and the turbulent Prandtl number. 

It would clearly be desirable to study flows with different combinations of mean 
velocity and mean temperature profiles. The I easiest ones experimentally could be 
produced by retaining the same mean shear and changing the mean temperature 
gradient. The quantitative effect of such a change on the turbulent transport properties 
is not apriori obvious, even for the case with a mean temperature gradient of magnitude 
equal but direction opposite to the present one. 

Of particular future interest would be the case of much higher heating, when 
buoyancy effects would become significant. A principal technical problem might be 
the requirement of a longer distance to achieve an asymptotic, ‘moving equilibrium’ 
state. 

For the study of additional off-diagonal components of the turbulent diffusivity 
tensor, a mean temperature gradient which is not parallel to the mean velocity gradient 
would be in order. This might be achieved with the use of non-uniform wiring of the 
horizontal heating rods. Such an investigation is currently under way. 

More serious modifications of the system would be required to increase the mean 
velocity profile. Furthermore, although the present mean shear, 46.8 s-l, is not un- 
common in other shear flows (in a typical laboratory low-speed turbulent boundary 
layer studied by Johnson (1957, 1959), one momentum thickness away from the wall 
the mean shear was 65 s-I), it might be desirable to increase the mean shear, or perhaps 
preferably the turbulent Reynolds number by one order of magnitude. 

This work was supported by the U.S. National Science Foundation, Program on 
Atmospheric Sciences. 
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